Calculus AB

2-1

Definition of the Derivative

Show and explain how to find the slope of the secant line shown. Fill in the graph appropriately with all necessary details.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{F(x+\Delta x)-F(x)}{x+\Delta x-x}$
$m=\frac{F(x+\Delta x)-F(x)}{\Delta x}$

Find the slope of the tangent line to the graph of the function (pg. 104) at the specified point.

$$
\begin{aligned}
& \begin{array}{l}
\text { old } 5) f(x)=3-2 x, \quad(-1,5) \\
\lim _{\Delta x \rightarrow 0} \frac{F(x+\Delta x)-F(x)}{\Delta x}=\frac{[3-2(x+\Delta x)]-[3-2 x]}{\Delta x}
\end{array} \\
& =\frac{3-2 x-2 \Delta x-9+2 x}{\Delta x}=\frac{-2 \Delta x}{\Delta x}=-2 \\
& f^{\prime}(x)=-2 \\
& F^{\prime}(-1)=-2
\end{aligned}
$$

Find the derivative by the limit process.

$$
\begin{aligned}
& F(x)=\lim _{\Delta x \rightarrow 0} \frac{F(x-\Delta x)-F(x)}{\Delta x}=\frac{3-3}{\Delta x}=0 \\
& F^{\prime}(x)=0
\end{aligned}
$$

Find the derivative by the limit process.
$\left.\begin{array}{l}\text { old } \\ \text { book }\end{array} 23\right) f(x)=\sqrt{x+1}$

Assignment:

Pg. 104
1, 5-19 odd,
22, 24

